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EXECUTIVE SUMMARY 

State highway agencies routinely employ highway-speed-data-collection vehicles equipped with 

downward-looking digital cameras for the collection of network-level pavement images. These 

digital pavement images are then processed using proprietary semi-automated or fully automated 

image processing algorithms to identify pavement cracking information for reporting and use in 

pavement management systems for agency decision making regarding pavement preservation 

and rehabilitation.  

Advancements are still being made in the development of accurate and reliable image-based 

pavement crack detection and classification algorithms. There is a need for the development of 

automated, low-cost crack-detection algorithms that could be implemented by highway agencies 

for cost-effective and continuous roadway health monitoring and management. 

The main objective of this proof-of-concept research was to develop a shape-based pavement-

crack-detection approach for the reliable detection and classification of cracks from acquired 

two-dimensional (2D) concrete and asphalt pavement images. Concrete and asphalt pavement 

JPEG images acquired through the 2D area-scanning digital-imaging method (dimensions of 

3,072 by 2,048 pixels) were used for the analysis.  

The developed pavement-crack-detection approach takes advantage of the spatial distribution of 

crack pixels and works on each pavement image block of 75 by 75 pixels. The overall crack-

detection algorithm consists of four stages: local filtering, maximum component extraction, 

polynomial fitting of possible crack pixels, and shape metric computation and filtering. After 

completing the crack detection process, the width of each crack segment is computed to classify 

the cracks. 

In order to verify the developed crack-detection approach, a series of experiments was conducted 

on real pavement images without and with cracks at different severities. The developed shape-

based pavement-crack-detection algorithm was able to detect cracks at different severities from 

both asphalt and concrete pavement images. Further, the developed algorithm was able to 

compute crack widths from the images for crack classification and reporting purposes.  

Additional research is needed to improve the robustness and accuracy of the developed approach 

in the presence of anomalies and other surface irregularities. 
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INTRODUCTION 

Problem Statement 

Pavement management can be traced as early as the ancient Roman Empire, but pavement 

management using computer systems began during the 1970s. Advances in pavement health 

monitoring technologies and pavement management systems (PMSs) have helped transportation 

agencies make discoveries about the best practices for preventive maintenance and pavement 

management.  

Highway surfaces are typically designed for 15 to 20 years of normal deterioration, assuming 

that routine maintenance functions (such as crack sealing and pothole patching) are carried out. 

Efficient health monitoring strategies for bridges and pavements can aid engineers in identifying 

developing distresses and scheduling maintenance early.  

Highway and pavement health monitoring techniques can broadly be classified under four major 

categories: deflection-based, image-based, wave propagation-based, and in situ sensing-based. 

Each one addresses the health-monitoring objective from a different perspective and foundation.  

Image-based health monitoring methods have a history of more than 30 years, and they have 

primarily been focused on pavement surface cracking, because that is one of the pavement 

distresses that can be easily captured through imaging. What began as windshield or manual 

surveys evolved into capturing analog photographs or videotapes, which were then processed to 

extract pavement-cracking information.  

The current state-of-the-practice is to acquire two-dimensional (2D) digital images of pavements 

using high-speed cameras mounted on a specialized data-collection van moving at highway 

traffic speeds. Once the high-resolution digital images of the pavement surfaces are obtained, 

they are processed through a compression subsystem to achieve size reduction without loss of 

quality before they are stored. The images are then processed using various algorithms to extract 

cracking information and summary statistics, which are then recorded in the surface distress 

database (and can be linked to a PMS). 

Advancements are still being made in the development of accurate and reliable image-based 

pavement-crack-detection and classification algorithms. There is a need for the development of 

automated, low-cost crack detection algorithms that can be implemented by highway agencies 

for cost-effective and continuous roadway health monitoring and management. 

Research Objective and Approach 

The objective of this proof-of-concept research project was to develop a shape-based pavement-

crack-detection approach for the reliable detection and classification of cracks from acquired 2D 

pavement images.  
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The developed approach takes advantage of the spatial distribution of crack pixels and works on 

each pavement image block of 75 by 75 pixels. The overall crack detection algorithm consists of 

four stages: local filtering, maximum component extraction, polynomial fitting of possible crack 

pixels, and shape metric computation and filtering. After completing the crack-detection process, 

the width of each crack segment is computed to classify the cracks. 
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IMAGE-BASED PAVEMENT CRACKING DATA COLLECTION AND PROCESSING: 

A BRIEF REVIEW 

Existing Pavement Cracking Data Collection Practices 

Many state and local agencies employ highway-speed data-collection vehicles to collect 

pavement images, which are then processed using proprietary image processing algorithms to 

classify cracking type, extent, and severity. The Federal Highway Administration (FHWA) 

Long-Term Pavement Performance Program (LTPP) developed the Distress Identification 

Manual, which provides a consistent and uniform method to collect and report pavement distress 

data for the LTPP.  

Most state highway agencies (SHAs) have their own distress identification/survey manuals, some 

of which are listed below, that have been modified from the LTPP distress identification manual 

to fit each agency’s data collection needs for pavement management and design: 

 Colorado (2004): Colorado DOT Distress Manual for HMA and PCC Pavements 

 Minnesota (2003): Mn/DOT Distress Identification Manual 

 Nebraska (2012): Surface Distress Survey Manual  

 Oregon (2010): Pavement Distress Survey Manual  

 South Dakota (2009): SDDOT’s Enhanced Pavement Management System: Visual Distress 

Survey Manual  

 Texas (2010): Texas DOT Pavement Management Information System: Rater’s Manual 

 Utah (2003): Utah DOT Distress Manual  

 Virginia (2012): A Guide to Evaluating Pavement Distress Through The Use of Digital 

Images  

According to National Cooperative Highway Research Program (NCHRP) Synthesis 401, 

Quality Management of Pavement Condition Data Collection, transverse cracking and fatigue 

cracking are among the distresses for which data are most commonly collected by highway 

agencies, as shown in Figure 1 (Flintsch and McGhee 2009). 
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Flintsch and McGhee 2009 

Figure 1. Different types of pavement cracking data collected by state highway agencies 

Based on a survey of pavement distress definitions used by state departments of transportation 

(DOTs), NCHRP Synthesis 457, Implementation of the AASHTO Mechanistic-Empirical 

Pavement Design Guide and Software, indicated that most responding agencies had their asphalt 

concrete (AC) alligator cracking (36 agencies) and jointed plain concrete pavement (JPCP) 

transverse cracking (35 agencies) data collection procedures consistent with the procedures in the 

LTPP Distress Identification Manual (Miller and Bellinger 2003), while longitudinal cracking, 

thermal cracking, and reflective cracking data collection procedures for AC-surfaced pavements 

were often not consistent with the LTPP data collection procedures (Pierce and McGovern 

2014). 

As of 2012, more than 35 state highway agencies employed semi-automated and automated 

image-based methods for network-level pavement cracking data collection (Vavrik et al. 2013). 

The various sources of variability in pavement cracking data collection and processing for 

automated, semi-automated, and manual methods are summarized in Figure 2.  
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Flintsch and McGhee 2009, McNeil and Humplick 1991 

Figure 2. Sources of variability in pavement cracking data collection and processing 

Studies have highlighted that a noticeable bias exists in automated crack detection methods 

toward detecting high-severity cracking than low-severity cracking because high-severity 

cracking is in general, more readily identifiable than low- or medium-severity cracking 

(McQueen and Timm 2005, Flintsch and McGhee 2009). 

NCHRP Synthesis 334, Automated Pavement Distress Collection Techniques, documents 

highway agency practices with regard to the automated collection and processing of pavement 

condition data techniques typically used in network-level pavement management. Factors that 

could potentially contribute to variability in automated pavement cracking data collection and 

processing practices adopted by various highway agencies (based on a survey conducted in 

2003) are summarized below (McGhee 2004): 

 Automated cracking data collection: agency, contract 

 Automated cracking data processing: agency, contract 

 Image capture: analog, digital, laser 

 Protocol use: American Association of State Highway and Transportation Officials 

(AASHTO), LTPP, other 

 Monitoring frequency (years): 1, 2, 3 

Cracking 
Measurement

Manual: 
Windshield 
Evaluation

Semi-
Automated

Automated: 
Pavement 

Images

Manual 
Processing

Software 
Processing

Data 
Collection

Data 
Processing

Sources of 
Variability

• Equipment Type/Data Collection Method: Type of imaging technology, 
Resolution of the imaging equipment, Quality of the color contrast of the 
pavement image, Lighting method

• Raters/equipment operator training

• Processing software

• Measurement environment
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 Reporting intervals: 100–300 m, 10–50 m, segment, other 

 Linear reference methods: mile post, latitude-longitude, link-node, log mile, other 

The various pavement cracking types and summary descriptions from the LTPP distress 

identification manual and AASHTO PP 67-10, the two major protocols used by highway 

agencies, are summarized in Table 1 and Table 2, respectively. A variety of pavement cracking 

data is desired by the SHAs, not only for their asset/pavement management activities, but also 

for FHWA’s Highway Performance Monitoring System (HPMS) reporting requirements and for 

evaluating and calibrating the AASHTOWare Pavement ME Design software (currently being 

implemented by several SHAs). Recent changes in HPMS requirements demand that the state 

DOTs collect the following detailed cracking data (Vavrik et al. 2013): 

 AC pavements: fatigue cracking (percent area), transverse cracking (ft/mi) 

 Portland cement concrete (PCC) pavements: cracking (percent area); longitudinal cracking 

for continuously reinforced concrete pavement (CRCP) 

 AC/PCC pavements: fatigue cracking (percent area), transverse reflective cracking (ft/mi) 
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Table 1. Various pavement cracking types, descriptions, and defined severity levels 

summarized in the LTPP distress identification manual 

Pavement 

Type 

Cracking Type (Unit of 

Measure) Summary Description 

Defined 

Severity 

Levels 

AC-

surfaced 

Fatigue Cracking (m
2
 or ft

2
) 

Series of interconnected cracks 

in areas subjected to repeated 

traffic loadings (wheel paths). 

Yes 

Block Cracking (m
2
 or ft

2
) 

Pattern of cracks that divides the 

pavement into approximately 

rectangular pieces. 

Yes 

Edge Cracking (m or ft) 
Crescent-shaped cracks adjacent 

to unpaved shoulder. 
Yes 

Wheel Path Longitudinal 

Cracking (m or ft) 

Cracks predominantly parallel to 

pavement centerline (wheel path) 
Yes 

Non-Wheel Path Longitudinal 

Cracking (m or ft) 

Cracks predominantly parallel to 

pavement centerline (non-wheel 

path) 

Yes 

Transverse Reflection Cracking 

(reported as Transverse 

Cracking) 

Transverse cracks in AC overlay 

surfaces that occur over joints in 

concrete pavements 

N/A 

Longitudinal Reflection 

Cracking (reported as 

Longitudinal Cracking) 

Longitudinal cracks in AC 

overlay surfaces that occur over 

joints in concrete pavements 

N/A 

Transverse Cracking (No., m or 

ft) 

Cracks that are predominantly 

perpendicular to pavement 

centerline 

Yes 

PCC-

surfaced 

Corner Breaks (No.) 

A portion of the slab separated 

by a crack intersecting the 

adjacent transverse and 

longitudinal joints at 45-deg 

Yes 

“D” cracking (No., m
2
 or ft

2
) 

Closely spaced crescent-shaped 

hairline cracking pattern 
Yes 

Longitudinal Cracking (m or ft) 

Cracks that are predominantly 

parallel to the pavement 

centerline 

Yes 

Transverse Cracking (No., m or 

ft) 

Cracks that are predominantly 

perpendicular to the pavement 

centerline 

Yes 

Map Cracking (No., m
2
 or ft

2
) 

A series of cracks that extend 

only into the upper surface of the 

slab 

N/A 

Miller and Bellinger 2003 
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Table 2. Various pavement cracking types, descriptions, and defined severity levels 

summarized in AASHTO PP 67-10 

Pavement 

Type 

Cracking Type (Unit of 

Measure) Summary Description 

Defined 

Severity 

Levels 

AC-

surfaced 

Longitudinal Crack (m or ft) 

A crack at least 0.3 m long and 

with a crack orientation between 

+10 and –10 deg. 

Yes 

Transverse Crack (m or ft) 

A crack at least 0.3 m long and 

with a crack orientation between 

80 and 100 deg. 

Yes 

Pattern Crack (m or ft) 

A crack that is part of a network 

of cracks that form an 

identifiable grouping of shapes 

Yes 

 

Pavement Crack Detection and Classification 

TR Circular No. E-C156, Automated Imaging Technologies for Pavement Distress Surveys, 

summarized the current state-of-the-art in the acquisition and processing of pavement surface 

images (Wang and Smadi 2011). In recent years, several advances have been made in image 

collection technology, equipment hardware and software, decoding and extraction methods, etc. 

A number of projects sponsored by SHAs, the National Cooperative Highway Research Program 

(NCHRP), and the FHWA have been initiated and completed with the objective of automating 

and improving image-based pavement distress detection and classification. Under High-Speed 

Rail IDEA Project 49, Ahuja and Barkan (2007) employed machine vision analysis by imaging 

both visible and infrared spectra of railroad equipment undercarriage for addressing incipient 

failure detection. A prototype of the machine vision inspection system was developed and tested 

at a passenger car service and inspection facility. Elkrry and Anderson (2013) provided a 

comprehensive summary of the network-level and project-level non-invasive imaging 

technologies applicable to pavement assessment. An Iowa DOT project (Neubauer and Todsen 

2013) is investigating the use of acoustic imaging equipment to inspect bridge substructural 

elements. 

More recently, studies have been exploring the potential for using three-dimensional (3D) laser 

imaging technology for pavement distress surveys. Wang and Li (2014) proposed the use of 3D 

laser imaging for pavement surface data collection on the Oklahoma DOT Interstate network, 

including longitudinal profile, transverse profile, macro-texture, cracking, and various surface 

defects. Under a project sponsored by the Southern Plains Transportation Center, Wang (2014) is 

investigating the use of 1 mm 3D laser imaging (PaveVision3D system) for pavement surface 

characterization (mean texture depth, mean profile depth, etc.) related to pavement safety. An 

ongoing Florida DOT–sponsored research project (Roque 2014) is investigating the application 

of imaging techniques to evaluate the polishing characteristics of aggregates. An Ohio 

DOT/FHWA–sponsored research project (Wei et al. 2014) is currently investigating the use of a 
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nonintrusive side-of-the-road camera to develop a rapid video-based vehicle identification 

(RVIS) system.  

A summary of selected studies in recent years that have focused on improving image-based 

pavement distress detection methods is provided in Table 3. 

Table 3. Summary of selected recent studies that have focused on the improvement of 

automated pavement crack identification and classification 

No. Reference Innovation 

1 Sun and Qiu (2007) Use of multi-scale morphologic edge detection 

method for automatic identification of cracks 

2 Oliveria and Correia (2009) Use of anisotropy measure and multi-layer perceptron 

neural networks to classify cracks 

3 Lairong et al. (2009) Use of support vector machine (SVM) to design 

pavement crack classifier  

4 Zhang et al. (2009) Use of Wiener filter to improve pavement crack 

identification accuracy 

5 Liang and Sun (2010) Use of wavelet technology for edge detection of 

cracks from pavement surface images 

6 Zou et al. (2012) Use of geodesic shadow-removal algorithm and 

recursive tree-edge pruning to detect cracks from 

asphalt pavement images 

7 Adarkwa and Attoh-Okine 

(2013) 

Use of tensor decomposition in pavement crack 

classification  

8 Peng et al. (2014) Automatic crack detection by multi-seeding fusion on 

1 mm resolution 3D pavement images 
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DEVELOPMENT OF A SHAPE-BASED PAVEMENT CRACK DETECTION 

APPROACH  

We propose a shape-based pavement crack detection approach, taking advantage of the spatial 

distribution of crack pixels. This approach works on each pavement image block of size 75 by 75 

pixels and consists of four stages: 

 Local filtering  

 Maximum component extraction  

 Polynomial fitting of possible crack pixels 

 Shape metric computation and filtering 

Local Filtering 

Considering the fact that crack pixels have relatively lower intensity values compared to non-

crack pixels in one pavement image, we first design a filter to remove non-crack pixels for each 

pavement block, RawBlock
(i)

. The filter is defined as follows: 

𝑭𝒊𝒍𝒕𝒆𝒓𝑩𝒍𝒐𝒄𝒌{(𝒊)}(𝒙)  =  {
1, 𝑖𝑓 𝑹𝒂𝒘𝑩𝒍𝒐𝒄𝒌(𝒊)(𝒙)  <  𝒇 ∗ 𝝁(𝒊)

0, 𝑒𝑙𝑠𝑒
 (1) 

where RawBlock
(i)

(x) and FilterBlock
(i)

(x) represent the image intensity at position x in input 

pavement block, RawBlock
(i)

, and output pavement block, FilterBlock
(i)

, respectively; 
(i)

 is the 

mean intensity value of input block RawBlock
(i)

; and parameter f is empirically set as 0.8 based 

on histogram analysis.  

Output FilterBlock
(i)

 is a binary image, where white and black pixels correspond to possible 

crack pixels and non-crack pixels, respectively. We give an example to show the performance of 

filtering in Figure 3. We make the observation from Figure 3 that the local filter has the 

capability to extract crack pixels, although it introduces some noise from pavement textures. 

 

Figure 3. Example of local filtering to remove non-crack pixels: Input RawBlock
(i)

 (left) and 

Output FilterBlock
(i) 

(right)  
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Major Component Extraction 

Because the local filter introduces some noise from pavement texture when extracting crack 

pixels, we need to develop a major component extraction approach to refine crack pixels from all 

possible crack pixels. Our major component extraction process consists of two steps: (1) minor 

component removal and (2) maximum component extraction. 

 Minor Component Removal: we employ the MATLAB function bwareaopen() to remove 

minor components. The details are given as follows:  

MajorBlock
(i)

 = bwareaopen(FilterBlock
(i)

; 10) 

This MATLAB command aims to remove minor connected components whose sizes are 

smaller than 10 pixels. We test the minor component removal approach on the filtered binary 

crack block as shown in Figure 4 (left) and display the output block in Figure 4 (right). 

 

Figure 4. An example of minor component removal: Input FilterBlock
(i)

 (left) and Output 

MajorBlock
(i) 

(right)  

 Maximum Component Extraction: We employ the MATLAB function 

bwconncomp(MajorBlock
(i)

) to get all connected components in crack block, MajorBlock
(i)

, 

and remove all but the component with the maximum area. We employ MaxBlock
(i)

 to denote 

the final output image containing only the maximum component. We test the whole process 

of maximum component extraction on a set of raw pavement blocks and display one typical 

example in Figure 5. 

 

Figure 5. Example of maximum component extraction: Input MajorBlock
(i
 (left) and 

Output MaxBlock
(i) 

(right)  
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We make the following observations from the experiment results: 

 Case 1: Continuous Pavement Crack. In this case, the output maximum component has the 

capability to accurately track the whole pavement crack. The width of the pavement cracks in 

medium- or high-severity cracking is usually larger than 2 pixels. For those cracks wider than 

2 pixels, the size of the maximum components is higher than 150 pixels with a probability as 

high as 99.99%. An example of a continuous crack of medium severity is given in Figure 6 

(far left). We test the maximum component extraction approach on the crack block and 

display the result in Figure 6 (far right). The maximum component overlaps with the 

continuous pavement crack very well, and the size of the crack component is 196 pixels. 

 

Figure 6. Example of continuous pavement crack (from left to right): raw crack block, local 

filtering, minor removal, and maximum extraction 

 Case 2: Noncontinuous Pavement Crack. Due to interruptions, the maximum component 

from the extraction process corresponds to the major part of the noncontinuous crack in this 

scenario. The size of the maximum component depends on the crack width, number of 

interruptions, and the locations of the interruptions. For a noncontinuous crack at low or 

medium severity, the size of its maximum component will be between 50 and 150 pixels with 

a high probability. An example of a noncontinuous crack at medium severity is given in 

Figure 7 (far left). We present the maximum component from the crack block in Figure 7 (far 

right). There are four interruptions in the pavement crack, and the maximum component is 

from the top part (i.e., the largest one). The size of the component is equal to 121 pixels. 

 

Figure 7. Example of noncontinuous pavement crack at medium severity (from left to 

right): raw crack block, local filtering, minor removal, and maximum extraction 

 Case 3: Non-Crack Pavement Block with Strong Longitudinal Tined Texture. The sizes 

of the maximum components from non-crack pavement blocks with a strong longitudinal 
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tined texture are almost in the same range as those from noncontinuous cracks at low and 

medium severity, i.e., lying between 50 and 150 pixels with a probability as high as 90%. 

Figure 8 (far left) shows an example of a non-crack pavement block with a strong 

longitudinal tined texture. We test the maximum component extraction process on the block 

and display the maximum component in Figure 8 (far right), whose size is equal to 130 

pixels. 

 

Figure 8. Example of non-crack pavement block with strong longitudinal tined texture 

(from left to right): raw pavement block, local filtering, minor removal, and maximum 

extraction 

 Case 4: Non-Crack Pavement Block with Light Longitudinal Tined Texture. The sizes 

of the maximum components from non-crack pavement blocks with a smooth texture are 

smaller than 50 pixels with a probability as high as 99%. Figure 9 (far left) shows an example 

of a non-crack pavement block with a light longitudinal tined texture. We test the maximum 

component extraction process on the block and display the maximum component in Figure 9 

(far right). The size of the component is equal to 18 pixels.  

 

Figure 9. Example of non-crack pavement block with light longitudinal tined texture (from 

left to right): raw pavement block, local filtering, minor removal, and maximum extraction 

Based on the above discussion, we conclude that when pavement cracks at medium or low 

severity are noncontinuous, the whole crack extraction process will produce maximum 

components of small sizes, even smaller than those from non-crack pavement blocks with a 

strong tined texture. Therefore, it is not proper to detect pavement cracks based on the area of the 

maximum component alone. As a result, we need to develop a new metric to distinguish crack 

blocks from non-crack blocks. By comparing Figure 7 to Figure 8, we notice that one major 

difference between noncontinuous crack and non-crack blocks with strong tined textures is the 

spatial distribution (i.e., shape) of possible crack pixels in binary block MajorIm, i.e., the output 
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of the minor removal process. However, non-crack blocks with a light tined texture differ from 

crack blocks mainly in the size of the maximum component in binary block MaxIm. We first 

make the following modification to the definition of the maximum component: 

For each pavement block RawBlock
(i)

, 

 Case 1: Size(MaxBlock
(i)

) >= T1 (i.e., continuous crack block),  

No changes.  

 Case 2: Size(MaxBlock
(i)

) >= T2 && Size(MaxBlock
(i)

) < T1 (i.e., noncontinuous crack 

block or non-crack pavement block with a strong tined texture),  

MaxBlock
(i)

 = MajorBlock
(i)

.  

 Case 3: Size(MaxBlock
(i)

) < T2 (i.e., pavement block with a light tined texture),  

MaxBlock
(i)

 = FilterBlock
(i)

. 

where T1 and T2 are empirically set to 150 and 50, respectively. Operations in Case 2 and Case 3 

are called maximum expansion. Then, the difference between crack blocks and non-crack blocks 

can be simplified as the spatial distribution of all possible crack pixels in binary image 

MaxBlock
(i)

. In the following subsection, we aim to develop a metric to measure the closeness of 

possible crack pixels in binary image MaxBlock
(i)

. 

Polynomial Fitting 

With maximum component MaxBlock
(i)

 available, we fit a polynomial curve to all possible crack 

pixels and compute the average fitting error. Polynomial fitting and fitting error computation are 

achieved by MATLAB functions polyfit() and polyval(), respectively. Because we do not know 

the orientation of the pavement cracks in advance, we fit cracks in both the horizontal and 

vertical directions in order to handle the scenarios of straightly oriented horizontal and vertical 

cracks. Then, we select one minimizing fitting error as the final fitting curve. Details are given as 

follows: 

𝑝𝑜𝑙𝑦𝑓𝑢𝑛𝑐𝐻 = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡(𝐶𝑋, 𝐶𝑌, 3) (2) 

𝑝𝑜𝑙𝑦𝑓𝑢𝑛𝑐𝑌 = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡(𝐶𝑌, 𝐶𝑋, 3) (3) 

where CX = {cx1; cx2; cx3;…; cxN}, and CY = {cy1; cy2; cy3;…; cyN} are the position vectors of 

crack pixels in the X and Y directions, respectively; polyfuncH and polyfuncV are the returned 

polynomial fitting functions in the horizontal and vertical directions, respectively; and N is the 



15 

total number of possible crack pixels in maximum component MaxBlock
(i)

. In this project, we 

employ a third-order polynomial curve to fit the pavement cracks. With the polynomial functions 

available, we compute the fitting error, AveErr, as follows: 

cŷk   =  polyval(polyfuncH;  cxk);  where k ∈  1, 2, … , N (4) 

cx̂k  =  polyval(polyfuncV;  cy𝑘);  where k ∈  1, 2, … , N (5) 

𝐴𝑣𝑒𝐸𝑟𝑟𝐻 =
∑ ((𝑐𝑦�̂�−𝑐𝑦𝑘)2)𝑁

𝑘=1

𝑁
 (6) 

𝐴𝑣𝑒𝐸𝑟𝑟𝑉 =
∑ ((𝑐𝑥�̂�−𝑐𝑥𝑘)2)𝑁

𝑘=1

𝑁
 (7) 

𝐴𝑣𝑒𝐸𝑟𝑟 = min {𝐴𝑣𝑒𝐸𝑟𝑟𝐻, 𝐴𝑣𝑒𝐸𝑟𝑟𝑉} (8) 

An example of polynomial fitting is shown in Figure 10. Figure 10 (left) is the binary crack 

block after maximum component extraction. We test both vertical and horizontal polynomial 

fitting on the crack block and display the fitting results in Figure 10 (center and right).  

 

Figure 10. Example of polynomial fitting of crack pixels: MaxBlock
(i)

 (left), vertical fitting 

(center), and horizontal fitting (right) 

The average polynomial fitting errors in the vertical and horizontal directions are equal to 3.6303 

and 120.8035, respectively. Therefore, we fit the crack in the vertical direction, and the final 

average fitting error of the crack block is equal to 3.6303. 

Shape Metric Computation and Threshold Filtering 

With the average polynomial fitting error available, we employ it to define a shape metric (SM) 

measuring the closeness of pixels in a maximum component as follows: 

𝑆𝑀 = 𝐴𝑣𝑒𝐸𝑟𝑟/𝑁 (9) 

It is worth mentioning that the shape metric has the following features: 
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 For an almost solid component, the shape metric increases with its width, as shown in Figure 

11 (right). The details involved in the development of this chart are as follows. For each 

width value, W, we create a vertical pavement crack lying in the center of the block. The 

horizontal width for each y follows the uniform distribution between 0.5 × W and W to 

mimic the true shapes of the cracks. An example of a 25 pixel wide crack via simulation is 

shown in Figure 11 (left). Because size of the pavement block is set to be 75 by 75 pixels, the 

maximum shape metric value is equal to about 0.007. 

 

Figure 11. Relation between crack width and shape metric (SM): 25 pixel wide crack (left) 

and relation chart (right) 

 For an unconnected component from the maximum expansion operation, the value of the 

shape metric will be relatively much higher due to the fact that the component pixels are 

widely distributed.  

As a result, it is reasonable to detect pavement cracks based on the devised shape metric. A 

pavement block is considered to contain cracks if and only if its shape metric value is smaller 

than 0.08 (detection criterion).  

In Figure 12 through Figure 15, we give some examples to show the shape metric values of crack 

and non-crack blocks. The shape metric value of the continuous crack block as shown in Figure 

12 is 0.0112.  

 

Figure 12. Example of polynomial fitting of continuous crack (left to right): raw crack 

block, maximum extraction, maximum expansion, and polynomial fitting 

For the noncontinuous crack block shown in Figure 13 (far left), the shape metric value is equal 

to 0.0591.  
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Figure 13. Example of polynomial fitting of noncontinuous crack (left to right): raw crack 

block, maximum extraction, maximum expansion, and polynomial fitting 

However, the shape metric values of the non-crack blocks shown in Figure 14 (far left) and 

Figure 15 (far left) are equal to 0.6235 and 1.2422, respectively.  

 

Figure 14. Example of polynomial fitting of non-crack block with strong tined texture (left 

to right): raw pavement block, maximum extraction, maximum expansion, and polynomial 

fitting 

 

Figure 15. Example of polynomial fitting of non-crack block with light tined texture (left to 

right): raw pavement block, maximum extraction, maximum expansion, and polynomial 

fitting 

Based on the detection criterion, the first two crack blocks will be classified as cracks, and the 

last two non-crack blocks will be classified as non-crack blocks, which satisfies our expectation. 

Pavement Joint Detection 

In this project, we focus only on detecting pavement cracks from acquired images and not 

detecting joints or road surface markings (such as those separating lanes or separating the 
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pavement from the shoulder). However, the acquired pavement images often include joints along 

with cracks. Because our proposed shape metric fails to distinguish cracks from joints, we design 

a pavement joint detection approach to remove joints before crack detection. One feature of 

pavement joints is that joint pixels are in straight lines. An efficient approach to detecting 

straight lines in an image is the Hough Transform. The details are as follows: 

 Step1: Employ a Gaussian filter to remove noise from pavement image rawPaveIm.  

gausFilter = fspecial(‘gaussian’, 15, 3.0),  

smoothPaveIm = imfilter(rawPaveIm, gausFilter, ‘same’),  

where fspecial and imfilter are MATLB functions for creating a Gaussian filter and removing 

noise.  

 Step 2: Employ the Canny method to extract edges from smoothed pavement image 

smoothPaveIm. 

edgePaveIm = edge(smoothPaveIm, ‘Canny’, 0.20),  

where edge is a MATLAB function used for identifying edges in an intensity image.  

 Step 3: Use the Hough Transform to detect the existence of straight lines in binary image 

edgePaveIm.  

[H, T, R] = hough(edgePaveIm),  

P = houghpeaks(H, 10, `threshold', ceil(0.10*max(H(:)))),  

DLines = houghlines(edgePaveIm, T, R, P, `FillGap', 1500, 'MinLength', 100),  

where hough, houghpeaks, and houghlines are MATLAB functions to implement the Hough 

Transform and Output Dlines is the set of identified lines in the image. 

Figure 16 shows an example of pavement divider detection. We overlap the detected pavement 

dividers in black with the raw pavement image in Figure 16 (far right) to facilitate observation. 
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Figure 16. Example of pavement joint detection (left to right): raw pavement image, noise 

removal, edge detection, and joint detection 
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EXPERIMENTS IN PAVEMENT CRACK DETECTION USING THE PROPOSED 

APPROACH 

We test our shape-based crack detection approach on different pavement datasets with various 

textures. The detection window is set to 75 by 75 pixels. For each pavement image, we move the 

detection window from left to right in a row and then move to the next row. Overlapping 

between neighboring detection windows in both the horizontal and vertical direction is set to 25 

pixels. 

Dataset 1: Pavement Images with Perfect Cracks 

In this subsection, we test our shape-based crack detection approach on a set of pavement images 

containing perfect cracks at various severities. We present three raw pavement images in Figure 

17 (left), Figure 18 (left), and Figure 19 (left).  

 

Figure 17. Example 1 of concrete crack at high severity: raw crack (left) and crack 

detection (right) 

 

Figure 18. Example 2 of concrete crack at low severity: raw crack (left) and crack detection 

(right) 
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Figure 19. Example 3 of concrete cracks at high and low severities: raw crack (left) and 

crack detection (right) 

Specifically, Figure 17 (left) contains a high-severity crack and an anomaly near the longitudinal 

joint. The pavement crack in Figure 18 (left) consists of different segments at various severities 

(i.e., the top, middle, and bottom segments are at high, medium, and low severity, respectively). 

Figure 19 (left) contains two cracks: the left one is at low severity and right one is at high 

severity. Shape-based crack detection results of the three pavement images are presented in 

Figure 17 (right), Figure 18 (right) and Figure 19 (right). We make the following observations 

from the detection results. 

 In the first example (Figure 17), our approach successfully detects both the pavement crack 

and the anomaly near the longitudinal joint.  

 In the second example (Figure 18), our approach successfully detects the pavement crack, 

missing part of crack segment in low severity.  

 In the third example (Figure 19), our approach successfully detects both pavement cracks at 

high and low severity. In all three examples, our approach was also able to detect black 

patches whose size is larger than 50 pixels. 

It is worth mentioning that the black lines in these figures represent horizontal and vertical 

dividers detected by the proposed pavement joint detection approach. Because we are only 

interested in cracks, not joints, we filter out all crack windows that intersect with pavement joints 

after the detection process. 

Dataset 2: Concrete Cracks at Various Severities 

In this subsection, we test our shape-based crack detection approach on a set of concrete crack 

images at various severity degrees to check the performance of our approach. 
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Detecting High-Severity Concrete Cracks 

We give three examples of concrete cracks at high severity in the left-hand images in Figure 20, 

Figure 21, and Figure 22.  

 

Figure 20. Example 1 of concrete crack at high severity: raw crack (left) and crack 

detection (right) 

 

Figure 21. Example 2 of concrete crack at high severity: raw crack (left) and crack 

detection (right) 

 

Figure 22. Example 3 of concrete crack at high severity: raw crack (left) and crack 

detection (right) 



23 

It is worth mentioning that Figure 22 (left) also contains a crack at low severity. The shape-based 

crack detection results from the three pavement images are presented in the right-hand images in 

Figure 20, Figure 21, and Figure 22. 

We make the following observations from the detection results: 

 Our approach has the capability to detect all cracks at high severity, although with some 

partial misses due to the small width of these crack segments. 

 Our approach can also detects small black patches, as shown in Figure 20 (right), as well as 

thin crack segments at low severity, as shown in Figure 22 (right).  

 Our approach also detects some raveling-type distress in the shoulder region beyond the 

joint. This can be explained by the fact that we employ constant parameters in our joint 

detection approach, which are not adaptive to various pavement datasets. In future work, 

more robust parameters are needed. 

Detecting Medium-Severity Concrete Cracks 

We give two examples of concrete cracks at medium severity in the left-hand images in Figure 

23 and Figure 24.  

 

Figure 23. Example 1 of medium-severity concrete crack: raw crack (left) and crack 

detection (right) 
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Figure 24. Example 2 of medium-severity concrete crack: raw crack (left) and crack 

detection (right) 

The shape-based crack detection results from the two crack images are shown in the right-hand 

images in Figure 23 and Figure 24. Detection results show that our approach successfully 

detected both medium-severity cracks, with partial misses. 

Detecting Low-Severity Concrete Cracks 

We present two examples of low-severity concrete cracks in the left-hand images in Figure 25 

and Figure 26  

 

Figure 25. Example 1 of low-severity concrete crack: raw crack (left) and crack detection 

(right) 
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Figure 26. Example 2 of low-severity concrete crack: raw crack (left) and crack detection 

(right) 

Figure 26 (left) contains one crack at high severity and two cracks at low severity, which can be 

seen by zooming into the image. The detection results of the two images are shown in the right-

hand images in Figure 25 and Figure 26, respectively. We observe that the approach successfully 

detected all low-severity cracks as well as the high-severity concrete crack. 

Dataset 3: Asphalt Pavement Images 

In this section, we test our shape-based pavement detection approach on a set of asphalt 

pavement images at various severity degrees to test the performance of our approach. 

Detecting High-Severity Asphalt Pavement Cracks 

We give two examples of detecting high-severity asphalt pavement cracks in the left-hand 

images in Figure 27 and Figure 28.  

 

Figure 27. Example 1 of high-severity asphalt pavement crack: raw crack (left) and crack 

detection (right) 
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Figure 28. Example 2 of high-severity asphalt pavement crack: raw crack (left) and crack 

detection (right) 

The detection results of the two crack images are presented in the right-hand images in Figure 27 

and Figure 28, respectively. We make the observation that our approach successfully detected 

both high-severity cracks, although with some partial misses. Additionally, we get one false 

positive around the white patch. This can be explained as follows. The detection window 

enclosing the white patch has a high intensity contrast between the white patch and the 

background. After local filtering, the background is considered to be a crack pixel, and the 

bottom part at lower intensity values is extracted as the maximum connected component, whose 

shape resembles that of a crack. 

Detecting Asphalt Pavement Cracks at Medium and Low Severities 

We give an example of an asphalt pavement image containing two cracks, the top one at medium 

severity and the bottom one at low severity, in Figure 29 (left). The crack detection result from 

the image is shown in Figure 29 (right). We make the observation that the approach successfully 

detected both cracks, although with some partial misses. 

 

Figure 29. Example of longitudinal asphalt pavement cracks at medium and low severities: 

raw crack (left) and crack detection (right) 
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CRACK WIDTH COMPUTATION 

Once the crack detection process is finished, we compute the width of each crack segment in 

order to classify the cracks. For each crack segment CrackSeg containing W detection windows, 

CSWind
(1)

, CSWind
(2)

,…,CSWind
(W)

, we first compute the average crack width in each detection 

window CSWind
(i)

. The details are as follows: 

 Employ a top-hat filter to remove noise from the crack block. 

 Employ the active contour method to segment the crack block into foreground and 

background regions and choose the one with the lower average intensity value as the crack 

region.  

 Extract the connected component with the maximum area as the crack component.  

 Compute the orientation of the crack segment and rotate the crack into a horizontal 

orientation. 

 Compute the X-range (i.e., xmin
(i)

, xmax
(i)

) of the crack segment. For each x ∈ {xmin
(i)

, 

…,xmax
(i)

}, compute the y difference of the crack, producing a set of y values {𝑦𝑥𝑚𝑖𝑛

(𝑖)
…𝑦𝑥𝑚𝑎𝑥

(𝑖)
}. 

The average crack width in the detection window CSWind
(i)

 is defined as follows: 

𝐴𝑣𝑒𝑊𝐶𝑟𝑐𝑘𝑊𝑖𝑑𝑡ℎ(𝑖) =
∑ 𝑦𝑥

(𝑖)𝑥𝑚𝑎𝑥
(𝑖)

𝑥=𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥
(𝑖)

−𝑥𝑚𝑖𝑛
(𝑖)  (10) 

Then the average width of the crack segment is computed as follows: 

𝐴𝑣𝑒𝐶𝑟𝑎𝑐𝑘𝑊𝑖𝑑𝑡ℎ =
∑ 𝐴𝑣𝑒𝑊𝐶𝑟𝑐𝑘𝑊𝑖𝑑𝑡ℎ(𝑖)×(𝑥𝑚𝑎𝑥

(𝑖)
−𝑥𝑚𝑖𝑛

(𝑖)
)𝑤

𝑖=1

∑ 𝑥𝑚𝑎𝑥
(𝑖)𝑊

𝑘=1 −𝑥
𝑚𝑖𝑛
(𝑖)  (11) 

An example of computing crack width in one detection window is presented in Figure 30.  
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Figure 30. Steps in average crack width computation in a crack block (left to right, top 

row, then bottom row): crack block, top hat filter, segmentation, minor removal, 

computing orientation, and rotation 

In Figure 30 (bottom center), fit crack pixels using a line and compute the orientation of the 

crack based on the line slope (92.5
o
 relative to horizontal axis). Based on Equation 10, the 

average crack width is computed as 4.53 pixels in this example. In addition, we show an example 

of computing the average width of the whole crack in Figure 31.  

 

Figure 31. Example of crack width computation 

The value in black below each segment represents the average width of the crack segment. The 

computed average widths of the left patch, middle crack, and right patch are 22.09, 6.87, and 

5.71 pixels, respectively.  
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In addition, we test the crack width computation approach on cracks at different severity levels. 

The images on the left in Figure 32, Figure 33, and Figure 34 show examples of cracks at high, 

medium, and low severity, respectively.  

 

Figure 32. Example of computing crack width at high severity: raw crack (left) and crack 

detection (right) 

 

Figure 33. Example of computing crack width at medium severity: raw crack (left) and 

crack detection (right) 

 

Figure 34. Example of computing crack at low severity: raw crack (left) and crack 

detection (right) 
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We employ the approach to compute the width of each crack segments and present the 

computation results in the right-hand images in Figure 32, Figure 33, and Figure 34. The results 

of the width computation satisfy our expectation that the widths of the crack segments at high 

severity are larger than those at medium and low severities. 
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SUMMARY 

State highway agencies routinely employ highway-speed data-collection vehicles equipped with 

downward-looking digital cameras for the collection of network-level pavement images. These 

digital pavement images are then processed using proprietary semi-automated or fully automated 

image processing algorithms to identify pavement cracking information for reporting and use in 

pavement management systems for agency decision making regarding pavement preservation 

and rehabilitation.  

Advancements are still being made in the development of accurate and reliable image-based 

pavement-crack-detection and classification algorithms. There is a need for the development of 

automated, low-cost crack detection algorithms that could be implemented by highway agencies 

for cost-effective and continuous roadway health monitoring and management. 

The main objective of this proof-of-concept research was to develop a shape-based pavement-

crack-detection approach for the reliable detection and classification of cracks from acquired 2D 

concrete and asphalt pavement images. Concrete and asphalt pavement JPEG images acquired 

through the 2D-area-scanning digital-imaging method (dimensions of 3,072 x 2,048 pixels) were 

used for the analysis.  

The developed pavement-crack-detection approach takes advantage of the spatial distribution of 

crack pixels and works on each pavement image block of 75 by 75 pixels. The overall crack 

detection algorithm consists of four stages: local filtering, maximum component extraction, 

polynomial fitting of possible crack pixels, and shape metric computation and filtering. After 

completing the crack detection process, the width of each crack segment is computed to classify 

the cracks. 

In order to verify the developed crack detection approach, a series of experiments was conducted 

on real pavement images without and with cracks at different severities. The developed shape-

based pavement-crack-detection algorithm was able to detect cracks at different severities from 

both asphalt and concrete pavement images. Further, the developed algorithm was able to 

compute crack widths from the images for crack classification and reporting purposes.  

Additional research is needed to improve the robustness and accuracy of the developed approach 

in the presence of anomalies and other surface irregularities. 
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