Investigation of the Impact of Dual-Lane Axle Spacing on Lateral Load Distribution Investigation of the Impact of Dual-Lane Axle Spacing on Lateral Load Distribution

Research Project

divider

Investigation of the Impact of Dual-Lane Axle Spacing on Lateral Load Distribution

Researcher(s)

Principal investigators: Brent Phares, 515-294-5879, bphares@iastate.edu (project list), Iowa State University

Co-principal investigators:

Project status

Completed

Start date: 12/01/14
End date: 05/31/16

Publications

Report: May 2016, Investigation of the Impact of Dual-Lane Axle Spacing on Lateral Load Distribution 4.41 mb (*pdf)

Related publications: Investigation of the Impact of Dual-Lane Axle Spacing on Lateral Load Distribution 85.33 kb *pdf May 2016

*To read pdf files, you may need to download the free Adobe Acrobat Reader.

Sponsor(s)/partner(s)

Sponsor(s): Federal Highway Administration State Planning and Research Funding
Iowa Department of Transportation

About the research

Abstract:

The spacing of adjacent wheel lines of dual-lane loads induces different lateral live load distributions on bridges, which cannot be determined using the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) or Load Factor Design (LFD) equations for vehicles with standard axle configurations. Current Iowa law requires dual-lane loads to meet a five-foot requirement, the adequacy of which needs to be verified. To improve the state policy and AASHTO code specifications, it is necessary to understand the actual effects of wheel-line spacing on lateral load distribution.

The main objective of this research was to investigate the impact of the wheel-line spacing of dual-lane loads on the lateral load distribution on bridges. To achieve this objective, a numerical evaluation using two-dimensional linear elastic finite element (FE) modelswas performed. For simulation purposes, 20 prestressed-concrete bridges, 20 steel bridges, and 20 slab bridges were randomly sampled from the Iowa bridge database. Based on the FE results, the load distribution factors (LDFs) of the concrete and steel bridges and the equivalent lengths of the slab bridges were derived.

To investigate the variations of LDFs, a total of 22 types of single-axle four-wheel-line dual-lane loads were taken into account with configurations consisting of combinations of various interior and exterior wheel-line spacing. The corresponding moment and shear LDFs and equivalent widths were also derived using the AASHTO equations and the adequacy of the Iowa DOT five-foot requirement was evaluated. Finally, the axle weight limits per lane for different dual-lane load types were further calculated and recommended to complement the current Iowa Department of Transportation (DOT) policy and AASHTO code specifications.

2711 S. Loop Drive, Suite 4700, Ames, Iowa 50010-8664
Phone: 515-294-9501 ~ Fax: 515-294-0467
The Bridge Engineering Center is administered by Iowa State University's Institute for Transportation.

Bridge Engineering Center logo

Timber Bridge Program Structural Health Monitoring Current Projects Completed Projects About BEC Staff Students Related Links

Iowa State University logo and link